Linked Conservation Data
Sharing Conservation Vocabularies

Kristen St John
Athanasios Velios

NKOS 2020
9 September 2020
Heritage (not biodiversity)
Documentation a critical task
Overall aim:
- Make conservation documentation widely accessible

Three project strands:
- Outreach and Education
- Terminology
- Modelling

Use Linked Open Data!
Linked Conservation Data - Thesaurus and Glossary Usage Questionnaire

Email address *

Valid email address

This form is collecting email addresses. Change settings

Name *

Short-answer text

Organization

Short-answer text

What is your current professional role? *

- [] Conservator
- [] Conservation Scientist
- [] Thesaurus editor
- [] Data manager
- [] Other...

What types of documentation do you generate? (check all that apply) *

- [] Conservation Treatment Documentation
<table>
<thead>
<tr>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What is your current position?</td>
<td>What types of documents Is your job?</td>
<td>How do you choose your terminology? (check</td>
<td>General Architecture, Building Site Book, Paper, and Photographic Paintings, Objects, and T</td>
<td>What is your current professional</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>Published thesaurus - if yes, please proceed</td>
<td>CAMEO: Conservation & Art Materials Encyclopedia Online, M</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>Yes</td>
<td>Published thesaurus - if yes, please proceed to the following questions to indicate which ones.</td>
<td>Graphics Atlas, Image Permanence Institute</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Assistant professor and/or Scientific Data Collection</td>
<td>Yes</td>
<td>No controlled vocabulary, choices guided by experience and knowledge</td>
<td>No controlled vocabulary, choices guided by experience and knowledge</td>
<td>Heritage Conservation Terminology: Definition of terms from various sources</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by experience and knowledge</td>
<td>Art & Architecture Thesaurus, Getty Research Institute</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>Yes</td>
<td>No controlled vocabulary, choices guided by</td>
<td>No controlled vocabulary, choices guided by experience and knowledge</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Conservator, Lecturer</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by</td>
<td>Getty Research Institute, Wikimedia, DIMEN ISO 472, DIMEN 1735-2017-07</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by</td>
<td>Getty Research Institute, Wikimedia, DIMEN ISO 472, DIMEN 1735-2017-07</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by</td>
<td>Getty Research Institute, Wikimedia, DIMEN ISO 472, DIMEN 1735-2017-07</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by</td>
<td>Getty Research Institute, Wikimedia, DIMEN ISO 472, DIMEN 1735-2017-07</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by</td>
<td>Getty Research Institute, Wikimedia, DIMEN ISO 472, DIMEN 1735-2017-07</td>
<td>41</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Conservator</td>
<td>Conservation Treatment</td>
<td>No</td>
<td>No controlled vocabulary, choices guided by</td>
<td>Getty Research Institute, Wikimedia, DIMEN ISO 472, DIMEN 1735-2017-07</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
</tbody>
</table>
Conservation controlled vocabularies

A library, media, and archival preservation glossary

ABC of bookbinding

AIC BPG Glossary of Terms
Glossary of the paper conservation group of the American Institute for Conservation. In category: books, paper

AIC Lexicon Terms
In category: general

Art & Architecture Thesaurus (AAT)
The AAT is a thesaurus containing generic terms, dates, relationships, sources, and notes for work types, roles, materials, styles, cultures, techniques, and other concepts related to art, architecture, and other cultural heritage (e.g., amphora, oil paint, objeverf, acetylosis, sintering, orthographic drawings, Olmeca, Rinascimento, Buddhism, watercolors, asa-no-ha-toji, srailais). In category: general
Terminology workshop (pre COVID-19!)
Workshop outcomes

• Wide range of vocabularies: from LOD SKOS thesauri to unsorted wordlists without IDs
• Good coverage: materials, object components
• Poor coverage: conditions, treatment techniques
• Getty Arts & Architecture Thesaurus
 – hub for aligning vocabularies
 – best candidate to expand for coverage
• Backbone Thesaurus
 – hub for CIDOC-CRM modelling
textblocks

Preferred label:
textblocks
tekstblokk

The word textblock is used to describe all the leaves in a book on which the text is written or printed. Where there is more than one text in a single binding, as in the case of composite volumes or Sammelbände, all the different texts are included in a single textblock. A textblock does not include endleaves or other leaves added by a binder, such as inserted text separators or interleaving, even though these may now carry additional written material. Endleaves and all other leaves added by the binder are, however, included in a bookblock. In certain exceptional circumstances, such as dos-à-dos bindings, a single binding may contain two or more bookblocks, each of which can in theory be a composite volume. Stationery bindings will often be made with a textblock which consists of blank gatherings yet to be written in, in which the outermost leaf of the outermost gathering at each end will be used as endleaves in the form of pastedowns (i.e. integral endleaves), and in these cases the textblock and the bookblock are the same thing. If the outermost gatherings of such a book are made in a different format from the rest of the gatherings (e.g. four leaves as opposed to eight leaves, or outside hooks instead of bifolia), or made from a different, possibly coloured, paper, these can be described as endleaves, and the other leaves as the textblock, together making the bookblock.

Hierarchy:

[+] bookblock components
[-] textblocks [-]
compositedtextblocks
openedtextblocks
unopenedtextblocks

Active editorial board
Available as LOD
Limited translations
<table>
<thead>
<tr>
<th>Hungarian</th>
<th>English</th>
<th>French</th>
<th>Italian</th>
</tr>
</thead>
<tbody>
<tr>
<td>acélmentszés</td>
<td>steel(-plate) engraving</td>
<td>gravure sur acier</td>
<td>incisione in acciaio</td>
</tr>
<tr>
<td>acélmetszet</td>
<td>steel(-plate) engraving</td>
<td>gravure sur acier</td>
<td>incisione in acciaio</td>
</tr>
<tr>
<td>achátkő</td>
<td>agate burnisher bloodstone</td>
<td>brunissoir d'agate</td>
<td>pietra agata</td>
</tr>
<tr>
<td>acquaforte l. rézmentszet</td>
<td>-</td>
<td>-</td>
<td>accquerello</td>
</tr>
<tr>
<td>akvarell</td>
<td>aquarell, gouache, wasserfarben</td>
<td>aquarelle, couleur à l'eau</td>
<td>colore a guazzo</td>
</tr>
<tr>
<td>álbordík</td>
<td>falsche Bünde</td>
<td>faux nerfs</td>
<td>nervi falsi</td>
</tr>
<tr>
<td>álcazott festett metszés</td>
<td>verschobener Schnitt</td>
<td>concealed for-edge painting</td>
<td>taglio mascherato</td>
</tr>
<tr>
<td>állag</td>
<td>Konsistenz</td>
<td>consistence</td>
<td>consistenza sostanza</td>
</tr>
<tr>
<td>álltható körzö l. mérőkörző</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>álló prés</td>
<td>Stockpresse</td>
<td>standing press</td>
<td>pressa a percusione</td>
</tr>
<tr>
<td>állomány (könyvtári)</td>
<td>book collection, buchbestand, büchersammlung</td>
<td>fond (de livres) stock</td>
<td>collezione, fondo di libri</td>
</tr>
<tr>
<td>állományvédelem</td>
<td>Bestanderhaltung</td>
<td>preservation</td>
<td>preservazione</td>
</tr>
<tr>
<td>ammónia</td>
<td>Ammoniak</td>
<td>anhydrous-ammonion</td>
<td>ammoniac</td>
</tr>
<tr>
<td>ammónium-hidroxid</td>
<td>Ammoniakhydrat, ammonium hydroxide</td>
<td>hydroxyde d'ammonium</td>
<td>hidrossido di ammoniac</td>
</tr>
<tr>
<td>ammónium-karbonát</td>
<td>Hirschhornsalz</td>
<td>carbonate of ammonia</td>
<td>carbonato d'ammonio</td>
</tr>
<tr>
<td>anilinfesték, -színezék</td>
<td>aniline-colour, coal-tar dyestuff</td>
<td>couleur d'aniline</td>
<td>colore di anilina</td>
</tr>
</tbody>
</table>

Alignment

• Encoding vocabularies
 – to make them machine readable
How to publish as SKOS
For vocabulary maintainers

START

Is vocab published in a machine-friendly format?

Is there a unique local and global identifiers?

Map encoded file to SKOS

Share as downloadable files and/or at a SPARQL endpoint.

Build website to serve vocab in a human friendly way

Encode concepts with (at least) scope note and preferred label

Decide on local ID and URI structure

Produce local IDs and URIs and add to encoded file

START

Identifiers are strings of characters which point to a concept (or label). Encoded data often have local identifiers (unique in a local context), but these may not be suitable for Linked Data which require unique identifiers in a global context (also known as URIs). E.g. the URI for the concept of paper in LOB is: http://w3id.org/lob/concept/1481

Encoding is when the concepts and labels from a vocabulary published as text (e.g. in a pdf format) are isolated manually and placed in some sort of data structure, e.g. a comma separated value (CSV) file (typically in a spreadsheet) or an XML file using markup.

Mapping means matching the fields of the encoded CSV or XML file to SKOS RDF (as triples). Some of the tools mentioned in note 6 are able to import and convert to SKOS. Manual mapping can be done using tools such as IM, Kerm and STILETO.

For a large vocabulary many hundreds or thousands of URIs will need to be published and maintained long term (e.g. in LOB the URI for the concept paper is this: http://w3id.org/lob/concept/1481 currently pointing to https://www.ligatus.org.uk/lob/concept/1481). A system to manage these is necessary. URIs may be needed for:
- concepts
- labels
- datasets
- vocabularies

URIs may need to reflect versions. Consider keeping the same URI for a concept in different versions (the essence of a concept should not change), but change the dataset URI based on the version.

The w3id consortium offers a service for URI redirection.
Guidelines for design of URIs can be found online, e.g. here, here and here.

This step is optional: it is useful for humans to be able to look up terms in the vocabulary in addition to sharing as data. Tools to build such a website include BioPortal, Bio2RDF, Protégé and TemaTree. LCD is discussing the adoption of a repository for SKOSified vocabularies see ??.

Sharing means to make the resulting SKOS file available online (e.g. in a repository as RDF, turtle or RDF-XML) and/or to make the data available at a SPARQL endpoint for querying. LCD is discussing the adoption of a repository for SKOSified vocabularies see ??.
How to publish as SKOS
For vocabulary maintainers

1. Encoding is when the concepts and labels from a vocabulary published as text (e.g. in a pdf format) are isolated manually and placed in some sort of data structure, e.g. a comma separated value (CSV) file (typically in a spreadsheet) or an XML file using markup.

2. Identifiers are strings of characters which point to a concept (or label). Encoded data often have local identifiers (unique in a local context), but these may not be suitable for Linked Data which require unique identifiers in a global context (also known as URIs). E.g. the URI for the concept of paper in LOD is: http://w3id.org/lob/concept/1481

3. For a large vocabulary many hundreds or thousands of URIs will need to be published and maintained long term (e.g. in LOD the URI for the concept paper is this: http://w3id.org/lob/concept/1481 currently pointing to https://www.ligatus.org.uk/lob/concept/1481). A system to manage these is necessary. URIs may be needed for:
 - concepts
 - labels
 - datasets
 - vocabularies

 URIs may need to reflect versions. Consider keeping the same URI for a concept in different versions (the essence of a concept should not change), but change the dataset URI based on the version.

 The w3id consortium offers a service for URI redirection.

 Guidelines for design of URIs can be found online, e.g. here, here and here.

4. Mapping means matching the fields of the encoded CSV or XML file to SKOS RDF (as triples). Some of the tools mentioned in note 6 are able to import and convert to SKOS. Manual mapping can be done using tools such as Jat, Kermo and STILETO.

5. Sharing means to make the resulting SKOS file available online (e.g. in a repository as RDF, turtle or RDF/XML) and/or to make the data available at a SPARQL endpoint for querying. LCD is discussing the adoption of a repository for SKOSfied vocabularies see (?).

6. This step is optional: it is useful for humans to be able to look up terms in the vocabulary in addition to sharing as data. Tools to build such a website include: BioPortal, Semantic, Woocomo and TemaTriq. LCD is discussing the development of a conservation portal for SKOSfied vocabularies see (?).
Permanent Identifiers for the Web

Secure, permanent URLs for your Web application that will stand the test of time.

The purpose of this website is to provide a secure, permanent URL re-direction service for Web applications. This service is run by the W3C Permanent Identifier Community Group.

Web applications that deal with Linked Data often need to specify and use URLs that are very stable. They utilize services such as this one to ensure that applications using their URLs will always be re-directed to a working website. This website operates like a switchboard, connecting requests for information with the true location of the information on the Web. The switchboard can be reconfigured to point to a new location if the old location stops working.

There are a growing group of organizations that have pledged responsibility to ensure the operation of this website. These organizations are: Digital Bazaar, 3 Round Stones, OpenLink Software, Applied Testing and Technology, Openspring, and Bosatsu Consulting. They are responsible for all administrative tasks associated with operating the service. The social contract between these organizations gives each of them full access to all information required to maintain and operate the website. The agreement is setup such that a number of these companies could fail, lose interest, or become unavailable for long periods of time without negatively affecting the operation of the site.

This website operates in HTTPS-only mode to ensure end-to-end security. This means that it may be used for Linked Data applications that require high levels of security such as those found in the financial, medical, and public infrastructure sectors.

All identifiers associated with this website are intended to be around for as long as the Web is around. This means decades, if not centuries. If the final destination for popular identifiers used by this service fail in such a way as to be a major inconvenience or danger to the Web, the community will mirror the information for the popular identifier and setup a working redirect to restore service to the rest of the Web.

If you would like to add or update a permanent identifier to the website, the preferred procedure is to perform the following steps:

1. Fork the website on Github.
2. Add or update a new redirect entry and commit your changes.
3. Submit a pull request for your changes.

Please help out the maintainers of the service with the following:

- Add contact info in a README or .htaccess comment.
<table>
<thead>
<tr>
<th>Folder/Path</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>.assets</td>
<td>move to bootstrap 3 and minor cleanup</td>
<td>5 years ago</td>
</tr>
<tr>
<td>.utils</td>
<td>Added README explaining how the git web hook PHP file works.</td>
<td>7 years ago</td>
</tr>
<tr>
<td>0x1</td>
<td>Update to Juchunko</td>
<td>2 years ago</td>
</tr>
<tr>
<td>360-sfs</td>
<td>Update .htaccess</td>
<td>3 years ago</td>
</tr>
<tr>
<td>3rs</td>
<td>Added link to US EPA Linked Data Services blog post.</td>
<td>3 years ago</td>
</tr>
<tr>
<td>AEOLUSsmartApi</td>
<td>Changed parent folder name</td>
<td>16 months ago</td>
</tr>
<tr>
<td>ARK</td>
<td>adding general rules for the ARK project</td>
<td>2 months ago</td>
</tr>
<tr>
<td>AcademIS</td>
<td>AcademIS ontology</td>
<td>2 years ago</td>
</tr>
<tr>
<td>AmlFAIR</td>
<td>repo on GitHub was renamed. Updating the redirect</td>
<td>15 months ago</td>
</tr>
<tr>
<td>BCI-ontology</td>
<td>BCI-O: add turtle resource</td>
<td>3 years ago</td>
</tr>
<tr>
<td>BESDUI</td>
<td>Added entry for BESDUI</td>
<td>4 years ago</td>
</tr>
<tr>
<td>CBGP SEEK</td>
<td>reconfigured to accept the w3id namespace on the URL</td>
<td>6 months ago</td>
</tr>
<tr>
<td>CONSIDER</td>
<td>Create .htaccess</td>
<td>7 months ago</td>
</tr>
<tr>
<td>DEMETER_ontologies</td>
<td>Update README.md</td>
<td>4 months ago</td>
</tr>
<tr>
<td>DockerPedia</td>
<td>added DockerPedia README file</td>
<td>2 years ago</td>
</tr>
<tr>
<td>EVENTSKG-Dataset</td>
<td>Rename EVENTSKG-Dataset/README.md to EVENTSKG-Dataset</td>
<td>15 months ago</td>
</tr>
</tbody>
</table>

About

Website source code for w3id.org

Releases

No releases published

Contributors 377

366 contributors

Languages

- HTML 66.8%
- PHP 13.2%
How to publish as SKOS
For vocabulary maintainers

1. Encoding is when the concepts and labels from a vocabulary published as text (e.g. in a PDF) are isolated manually and placed in some sort of data structure, e.g. a comma separated value (CSV) file (typically in a spreadsheet) or an XML file using markup.

2. Identifiers are strings of characters which point to a concept (or label). Encoded data often have local identifiers (unique in a local context), but these may not be suitable for Linked Data which require unique identifiers in a global context (also known as URIs). E.g. the URI for the concept of paper in LOD is: http://w3id.org/loj/concept/1481

3. For a large vocabulary many hundreds or thousands of URIs will need to be published and maintained long term (e.g. in LOD the URI for the concept paper is this: http://w3id.org/loj/concept/1481 currently pointing to https://www.ligatus.org.uk/loj/concept/1481). A system to manage these is necessary. URIs may be needed for:
 - concepts
 - labels
 - datasets
 - vocabularies

4. Mapping means matching the fields of the encoded CSV or XML file to SKOS RDF (as triples). Some of the tools mentioned in note 6 are able to import and convert to SKOS. Manual mapping can be done using tools such as JML, Kupo and STILETO.

5. Sharing means to make the resulting SKOS file available online (e.g. in a repository as RDF, turtle or RDF/XML) and/or to make the data available at a SPARQL endpoint for querying. LOD is discussing the adoption of a repository for SKOSified vocabularies see (??).

6. This step is optional; it is useful for humans to be able to look up terms in the vocabulary in addition to sharing as data. Tools to build such a website include BioPortal, Skosmos, Workbench and TemaTres. LOD is discussing the development of a conservation portal for SKOSified vocabularies see (??).
Linked Conservation Data

https://www.ligatus.org.uk/lcd

Conservation vocabularies repository

This repository hosts raw data representing conservation vocabularies: both published thesauri as well as local wordlists and vocabularies used in institutions or studios. The repository also hosts alignment data between different vocabularies. Best practices for the use of the repository are still being agreed. Current discussions are captured in the Terminology Guidelines document.
LCD repository

• Raw data, one file per vocabulary release
• Short term: engage community to enable conservators to publish
• Long term: fork and pull requests require minimum time from maintainers
How to publish as SKOS
For vocabulary maintainers

1. Encoding is when the concepts and labels from a vocabulary published as text (e.g. in a pdf format) are isolated manually and placed in some sort of data structure, e.g. a comma separated value (CSV) file (typically in a spreadsheet) or an XML file using markup.

2. Identifiers are strings of characters which point to a concept (or label). Encoded data often have local identifiers (unique in a local context), but these may not be suitable for Linked Data which require unique identifiers in a global context (also known as URIs). E.g. the URI for the concept of paper in LOD is: http://w3id.org/lo/ontology1481

3. For a large vocabulary many hundreds or thousands of URIs will need to be published and maintained long term (e.g. in LOD) the URI for the concept paper is this: http://w3id.org/lo/ontology1481 currently pointing to https://www.ligatus.org.uk/lo/ontology1481. A system to manage these is necessary. URIs may be needed for:
 - concepts
 - labels
 - datasets
 - vocabularies

 URIs may need to reflect versions. Consider keeping the same URI for a concept in different versions (the essence of a concept should not change), but change the dataset URI based on the version...

 The w3id consortium offers a service for URI redirection. Guidelines for design of URIs can be found online, e.g. here, here and here.

4. Mapping means matching the fields of the encoded CSV or XML file to SKOS RDF (as triples). Some of the tools mentioned in Note 6 are able to import and convert to SKOS. Manual mapping can be done using tools such as IM, Kema and STILETO.

5. Sharing means to make the resulting SKOS file available online (e.g. in a repository as RDF, turtle or RDF/XML) and/or to make the data available at a SPARQL endpoint for querying. LCD is discussing the adoption of a repository for SKOSified vocabularies see (??).

6. This step is optional; it is useful for humans to be able to look up terms in the vocabulary in addition to sharing as data. Tools to build such a website include: BioPortal, Shodemos, Wordnet and TemaTree. LCD is discussing the development of a conservation portal for SKOSified vocabularies see (??).

START

Is vocab published in a machine-friendly format?

- if no: Encode concepts with (at least) scope note and preferred label

- if yes: Are there unique local and global identifiers?

 - if no: Decide on local ID and URI structure

 - if yes: Produce local IDs and URIs and add to encoded file

Map encoded file to SKOS

Share as downloadable files and/or at a SPARQL endpoint.

Build website to serve vocab in a human friendly way.
LCD terminology portal

- Terminology querying
- Short term: working with the ResearchSpace project to provide interface
- Long term: ?
Alignment

• Encoding vocabularies
 – to make them machine readable

• Matching terms
 – strategies and methods for alignment
How to match concepts between vocabularies

For vocabulary maintainers

1. Vocabularies are hierarchical when their concepts are linked with broader/narrower relationships (e.g., paper has broader term printed material).
 Vocabularies are left hierarchies when narrower concepts are of the same type as their parent concepts. E.g., of is a: in LoB constructed boards are types of boards. E.g. of non-is a: in RSMS the Hardware are bindings are types of bindings, but they are narrower terms of wooden boards (which are not bindings).

2. Direct mapping: Matching to many vocabularies directly means more matching work, but possibly better coverage (e.g., LoB to RBMS and LoB to Roberts and Emerson and LoB to etc.).
 Hub mapping: Matching to hub vocabularies like AAT means less matching work but possibly limited coverage (e.g., some LoB concepts do not exist in AAT).

3. Leaf matching is when the top of a hierarchy of concepts from the source vocabulary can be matched to a concept in the target vocabulary which does not contain the same detail.
 Equivalence relationships here can be established when a concept of one vocabulary is marked as exact match of a concept in another, e.g., component is exact match to BBT structural parts of material things.
 Hierarchical relationships can be established when a concept of one vocabulary is marked as broader or narrower of a concept in another, e.g., pants is narrower match to BBT physical features.
 Software tools making this process easier include BBTab, vocab2AAT. In general vocabularies need to be SKOSified for these tools to work (see here).

4. Instructions for submitting new concepts to AAT can be found here.

5. Choosing a vocabulary other than AAT means that it would be particularly relevant to your vocabulary, that it is of about the same detail and that it is likely that people will want to search across the two, e.g., LoB and RBMS.

6. Equivalence relationships can be established when a concept of one vocabulary is marked as exact match or close match to a concept in another, e.g.
 Associative relationships can be established when a concept of one vocabulary is marked as related to a concept in another, e.g.
 Software tools making this process easier include: BBTab, vocab2AAT. In general vocabularies need to be SKOSified for these tools to work (see here).

7. Matching IDs of concepts across vocabularies means that the matches remain valid even if the labels for these concepts change.
How to match concepts between vocabularies
For vocabulary maintainers

1. Vocabularies are hierarchical when their concepts are linked with broader/narrower relationships (e.g., paper has broader term fibre materials).
 Vocabularies are left hierarchies when narrower concepts are of the same type as their parent concepts. E.g. of isA in LoB constructed boards are types of boards. E.g. of non-isA in RBMS the Rawmaterial are bindings, but they are narrower terms of wooden boards (which are not bindings).

2. Direct mapping: Matching to many vocabularies directly means more matching work, but possibly better coverage (e.g. LoB to RBMS and LoB to Roberts and Farmington and LoB to etc.).
 Hub mapping: Matching to hub vocabularies like AAT means less matching work but possibly limited coverage (e.g. some LoB concepts do not exist in AAT).

3. Leaf matching is when the top of a hierarchy of concepts from the source vocabulary can be matched to a concept in the target vocabulary which does not contain the same detail.
 Equivalence relationships here can be established when a concept of one vocabulary is marked as exact match of a concept in another, e.g. components is exact match to BBT structural parts of material things.
 Hierarchical relationships can be established when a concept of one vocabulary is marked as broader or narrower of a concept in another, e.g. parts is narrower match to BBT physical features.
 Software tools making this process easier include BBT, BBT, and AAT. In general vocabularies need to be SKOSified for these tools to work (see here).

4. Instructions for submitting new concepts to AAT can be found here.

5. Choosing a vocabulary other than AAT means that it would be particularly relevant to your vocabulary, that it is of about the same detail and that it is likely that people will want to search across the two, e.g. LoB and RBMS.

6. Equivalence relationships can be established when a concept of one vocabulary is marked as exact match or close match to a concept in another, e.g.
 Associative relationships can be established when a concept of one vocabulary is marked as related to a concept in another, e.g.
 Software tools making this process easier include: BBT, BBT, and AAT. In general vocabularies need to be SKOSified for these tools to work (see here).

7. Matching IDs of concepts across vocabularies means that the matches remain valid even if the labels for these concepts change.
How to match concepts between vocabularies
For vocabulary maintainers

1. Vocabularies are hierarchical when their concepts are linked with broader/narrower relationships (e.g., paper has broader term fibre materials).
 Vocabularies are flat hierarchies when narrower concepts are of the same type as their parent concepts. E.g., of isA: in LoB constructed boards are types of boards. E.g. of non-isA: in RBMS the hardware bindings are types of bindings, but they are narrower terms of Wooden boards (which are not bindings).

2. Direct mapping: Matching to many vocabularies directly means more matching work, but possibly better coverage (e.g., LoB to RBMS and LoB to Roberts and Emmerton and LoB to etc.).
 Hub mapping: Matching to hub vocabularies like AAT means less matching work but possibly limited coverage (e.g., some LoB concepts do not exist in AAT).

3. Leaf matching is when the top of a hierarchy of concepts from the source vocabulary can be matched to a concept in the target vocabulary which does not contain the same detail.
 Equivalence relationships here can be established when a concept of one vocabulary is marked as exact match of a concept in another, e.g. components is exact match to BBT structural parts of material things.
 Hierarchical relationships can be established when a concept of one vocabulary is marked as broader or narrower of a concept in another, e.g., parts is narrower match to BBT physical features.
 Software tools making this process easier include BBT2LoB, ooreg, AAT. In general vocabularies need to be SKOSified for these tools to work (see here).

4. Instructions for submitting new concepts to AAT can be found here.

5. Choosing a vocabulary other than AAT means that it would be particularly relevant to your vocabulary, that it is of about the same detail and that it is likely that people will want to search across the two, e.g. LoB and RBMS.

6. Equivalence relationships can be established when a concept of one vocabulary is marked as exact match or close match to a concept in another, e.g.
 Associate relationships can be established when a concept of one vocabulary is marked as related to a concept in another, e.g.
 Software tools making this process easier include: BBT2LoB, ooreg, AAT. In general vocabularies need to be SKOSified for these tools to work (see here).

7. Matching IDs of concepts across vocabularies means that the matches remain valid even if the labels for these concepts change.

START

Is your vocab strict isA?

Choose BBT

Leaf matching to BBT using hierarchical or equivalence relationships

Choose AAT

Submit missing concepts to AAT

Match every concept using equivalence or associative relationships

Store the IDs of the matched target concepts with the IDs of your source vocab

Decide strategy for vocabs matching

Match through a hub?

Choose target vocab for direct mapping

how

how

how

how

how

how
How to match concepts between vocabularies
For vocabulary maintainers

1. Vocabularies are hierarchical when their concepts are linked with broader/narrower relationships (e.g. paper has broader term fibre materials).
 Vocabularies are lost hierarchies when narrower concepts are of the same type as their parent concepts. E.g. of isA in LoB constructed boards are types of boards. E.g. of non-isA in RBMS the Raw materials are types of bindings, but they are narrower terms of Wooden boards (which are not bindings).

2. Direct mapping: Matching to many vocabularies directly means more matching work, but possibly better coverage (e.g. LoB to RBMS and LoB to Roberts and Emerson and LoB to etc.).
 Hub mapping: Matching to hub vocabularies like AAT means less matching work but possibly limited coverage (e.g. some LoB concepts do not exist in AAT).

3. Leaf matching is when the top of a hierarchy of concepts from the source vocabulary can be matched to a concept in the target vocabulary which does not contain the same detail.
 Equivalence relationships here can be established when a concept of one vocabulary is marked as exact match of a concept in another, e.g. component is exact match to BBT structural parts of material things.
 Hierarchical relationships can be established when a concept of one vocabulary is marked as broader or narrower of a concept in another, e.g. pants is narrower match to BBT physical features.
 Software tools making this process easier include BBTtab, concept VAT. In general vocabularies need to be SKOSified for these tools to work (see here).

4. Instructions for submitting new concepts to AAT can be found here.

5. Choosing a vocabulary other than AAT means that it would be particularly relevant to your vocabulary, that it is of about the same detail and that it is likely that people will want to search across the two, e.g. LoB and RBMS.

6. Equivalence relationships can be established when a concept of one vocabulary is marked as exact match or close match to a concept in another, e.g.
 Associative relationships can be established when a concept of one vocabulary is marked as related to a concept in another, e.g.
 Software tools making this process easier include: BBTtab, concept VAT. In general vocabularies need to be SKOSified for these tools to work (see here).

7. Matching IDs of concepts across vocabularies means that the matches remain valid even if the labels for these concepts change.

START

Is your vocab strict IsA?

Decide strategy for vocabs matching

Match through a hub?

Choose target vocab for direct mapping

Choose BBT using hierarchical or equivalence relationships

Submit missing concepts to AAT

Match every concept using equivalence or associative relationships

Store the IDs of the matched target concepts with the IDs of your source vocab
LCD repository

• Alignment data
 – different dataset to actual vocabularies to allow easier versioning
Linked Conservation Data

LCD Terminology Working Group

Vocabulary guidelines

Edited by: Athanasios Velios, Kristen St. John
Contributions by: Anastasia Axaridou, Ceri Binding, Nicola Carboni, Kirsten Dunne, John Graybeal, Ryan Lieu, Joseph Padfield, Eleni Tsouloucha, Jon Ward, Marcia Zeng and others.

Please send comments:
https://www.ligatus.org.uk/lcd/output/193
Future work

• Planning next phase:
 – process vocabularies
 • those which are easy to work with
 • those which are of interest to consortium
 • those ready to adopt LOD
 – populate LCD terminology portal
Thank you

- LCD terminology working group
 - Alberto Campagnolo, Anastasia Axaridou, Ceri Binding, Claudia Marinica, Douglas Tudhope, Eleni Tsoulouha, John Graybeal, Jon Ward, Joseph Padfield, Karen Waldemar, Kristen St.John, Layna White, Marcia Zeng, Maria Theodoridou, Michelle Barger, Nicola Carboni, Ryan Lieu, Stephen Stead